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Abstract-An analysis is performed to study the heat transfer characteristics of laminar mixed convective 
boundary-layer flow over a semi-infinite horizontal flat plate with non-uniform surface temperatures. The 
surface temperature is assumed to vary as a power of the axial coordinate measured from the leading edge 
of the plate. A nonsimilar mixed convection parameter x and a pseudo-similarity variable n are introduced to 
cast the governing boundary layer equations and their boundary conditions into a system of dimensionless 
equations which are solved numerically by a weighted finite-difference method. The mixed convection 
parameter K is chosen so that x = 0 corresponds to pure free convection and x = I corresponds to pure 
forced convection. Numerical results are presented for Prandtl numbers of 0.1, 0.7, 7 and 100 and 
representative values of the exponent n for the power-law variation in wall temperature. The heat transfer 
results are compared with existing correlations for the uniform wall temperature case and new correlations 
are derived for the general case of power-law wall temperature variations. It is found that an increase in 

the Prandtl number and exponent value n increases the local heat transfer rate. 

INTRODUCTION 

IN THE study of convective heat transfer it is customary 
to treat the problem as either pure forced convection 
or pure free convection. However, combined forced 
and free convection or ‘mixed’ convection arises in 
many transport processes in nature and in engineering 
devices (such as atmospheric boundary layer flows, 
heat exchangers, solar collectors, nuclear reactors, 
and electronic equipment) in which the effect of buoy- 
ancy forces on a forced flow, or the effect of forced 
flow on a buoyant how, is significant. Mixed con- 
vection in laminar boundary layer flow has been 
extensively analyzed for vertical flat plates (see, for 
example [l-4]), inclined plates 15, 61 and horizontal 
flat plates [7-131. Most past studies dealt with forced 
convection dominated regime, that is forced con- 
vection under the influence of relatively weak to moder- 
ately strong buoyancy forces. 

In their analysis of the buoyancy force effect on 
forced convection over horizontal plates Mori [7] and 
Sparrow and Minkowycz [8] found Gr,/Re.zl’ as the 
buoyancy force parameter. Their solutions were car- 
ried out by perturbation series through the first two 
terms, which limited the validity of their results to 
weak buoyancy force effects, Gr,lRe:12 << 1. Later, 
Chen et al. [lo] used the second level nonsimilarity 
method to obtain results for -0.03 < Gr,/Rez/* < 1 
and found that the previous results substantially 
overestimated the buoyancy force effects when 
Gr,/Re.~l’ > 0.2. Ramachandran et al. [l l] studied 
mixed convection over a horizontal plate under uni- 
form wall temperature for the entire mixed convection 
regime, from pure forced convection to pure free con- 
vection, by using the parameter Gr,/Re.z’2 to analyze 
the effect of buoyancy force on forced convection and 

the parameter Re,z’*/Gr, to analyze the effect of forced 
flow on free convection. In an attempt to cover the 
entire regime of mixed convection along vertical and 
horizontal plates, Raju et al. [ 121 proposed new mixed 
convection parameters that are valid from pure forced 
convection to pure free convection. For the case of 
a horizontal plate under uniform wall temperature, 
they used the new parameter Re.z/(Re.z+Gr.t) which 
reduces to 0 for pure free convection and to 1 for pure 
forced convection. Their Nusselt number results 
are limited to a range of Prandtl numbers Pr from 
0.1 to 10. 

The purpose of this investigation is to analyze 
mixed convection flow over a horizontal flat plate 
using a single mixed convection parameter that covers 
the entire regime of mixed convection, from the pure 
forced convection limit to the pure free convection 
limit. In contrast to the uniform wall temperature case 
treated by Raju et al. [12], in the present study the 
wall temperature of the plate is assumed to be non- 
isothermal and has a power-law variation with the 
axial coordinate. In addition, a different mixed con- 
vection parameter is employed, and results are given 
for 0.1 < Pr ,< 100. Representative velocity and tem- 
perature profiles, and local wall shear stress and local 
Nusselt number results are presented. Correlation 
equations for the local and average Nusselt numbers 
are also developed for use in practical applications. 

ANALYSIS 

Consider laminar mixed convection flow over a 
semi-infinite horizontal flat plate with the wall tem- 
perature varying as T,(x) = T, +~a!‘, where a and n 
are real constants. The free stream temperature is T, 

1859 



1860 W. R. RISBECK et al. 

NOMENCLATURE 

f reduced stream function, $x/[vRe:J’2] Greek symbols 
9 gravitational acceleration 

; 
thermal diffusivity of fluid 

Gr, local Grashof number, volumetric coefficient of thermal 
sP[T&) - ~mIx’Iv2 expansion 

Gr, Grashof number based on L, ‘1 pseudo-similarity variable (y/.u)Re.J”x- ’ 
gS[TwW) - ~c@1~31v2 0 dimensionless temperature 

h local heat transfer coefficient, v- T,m-J.4 - TX1 
clwl(Tw- TJ V kinematic viscosity of the fluid 

I; average heat transfer coefficient over P density of the fluid 
length L Tw local wall shear stress 

k thermal conductivity of the fluid x mixed convection parameter, 
L an arbitrary length along the plate Re.~‘2/(Re.~‘2+Gr.~‘5) 
n exponent in the power law variation of * stream function. 

the surface temperature 
Nu, local Nusselt number, hx/k 

NUL average Nusselt number, iiL/k 
Subscripts 

Pr Prandtl number of the fluid, v/u W condition at the wall 

Re, local Reynolds number, u,x/v 03 condition at the free stream 

ReL Reynolds number based on L, u,L/v 
F forced convection 

T fluid temperature N natural convection. 

U streamwise velocity component 
V normal velocity component Superscripts 
X axial coordinate denotes partial differentiation with 
Y normal coordinate. respect to q. 

and the free stream velocity parallel to the plate is u,. 
The x coordinate is measured from the leading edge 
of the plate and they coordinate is measured normal 
to the plate. The corresponding velocity components 
in the x and y directions are u and v, respectively. 
Under the Boussinesq approximation, the governing 
boundary layer equations for a constant-property 
fluid may be written as [IO] 

!!+au=o 
ax ay (1) 

au au 
uz+vay= (T-T,) dy+v$ (2) 

aT ar a2T 
“ax fvdy = av. (3) 

The corresponding boundary conditions are 

u=v=o, T= Tw(x)= T,+ax” aty=O 

u+u,, T+T, asy-+oo. (4) 

The first term on the right-hand-side of equation (2) 
is the buoyancy-induced streamwise pressure gradient 
and the plus and minus signs refer, respectively, to 
flow above and below the plate. 

Next, the system of equations (lk(4) can be trans- 
formed into a dimensionless form by introducing the 
following nondimensional quantities 

fb, rl) = 0(X> VI = 
T-T, 

Tw (4 - L 
(6) 

where x is the nonsimilar mixed convection param- 
eter, with Re, = u-x/v and Gr, = gl][T,(x) - T,]x.‘/v’ 
denoting, respectively, the local Reynolds and 
Grashof numbers, 9 is a pseudo-similarity variable, 
f(x,q) is the reduced stream function, and e(x,r~) 
is the dimensionless temperature. The stream func- 
tion $(x,y) satisfies the continuity equation with 
u = a$/ay and v = -&j/ax. It is noted that the mixed 
convection parameter x varies from 0 for pure free 
convection to I for pure forced convection. 

The transformation yields : 

f”‘+ $j[5+(2n+l)(l -x)]ff”- !?g!i(] -x)f’2 

*$j(l-x)5 [5-(2n+l)(l-X)lrlO 
I 

s 
m 

+[5(2n+ I)-(2n+ I)(1 -x)1 Nxt ~1 drl 
‘I 

q = Y;Re;‘2~- ‘, Re,/” 
’ = Re.Jl’+ Gr.d15 (5) =~X(l-x){+Y$} (7) 
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g + A[Sf (2n+ 1)(1 -x)]“w-rf0 

= %x(1-x){O+-‘~j (8) 

f’(x, 0) = 0, j-,(x. co) = x2 

15 + (2n + 1 I( 1 - XMX. 0) 

-(2n+ ,)x(1 4(x,0) = 0 

Q,O) = 1, e(x. co) = 0. (9) 

In equations (7)-(9) the primes denote partial differ- 
entiation with respect to q and Pr is the Prandtl 
number. The plus/minus sign in front of the fourth 
term in equation (7) now stands for buoyancy assisting/ 
opposing ilow. 

The system of equations (7~(9) can be solved by 
an appropriate numerical scheme. However, it is much 
more convenient to do so by defining a new variable 
G(x. ~1 

I 

rJ 
G(xtrl) = @(x9 rl) dv (10) 

‘I 

such that 

G’+B = 0, G(x, a) = 0. 

Equation (7) can then be written as 

+&x)5 [5-(2n+1)(1-xh~ 
i 

+[5(2n+l)-(2n+I)(l-x)]G 

-(2n+ 1)x(1 -x)$ 

=~x(l-x){$&l.~j. (12) 

Equations (8), (9), (11) and (I 2) comprise a system 
of equations that are coupled and they must be solved 
simultaneously. It is noted that for x = 0 (pure free 
convection) and x = I (pure forced convection) the f 
and 0 equations reduce to ordinary differential equa- 
tions and the boundary layers become similar. 

The physical quantities of interest include the axial 
velocity distribution U, the temperature profile 0(x, q), 
the local Nusselt number Nu, = hx/k, where h = 
qJ(T,,,-T,), with qw = -k(dT/+),.,, denoting the 
local surface heat flux, and the local wall shear stress 
t,,, = ~(&/Jy),.=,. In terms of the transformation vari- 
ables, the expressions for u/u,, Nu,, and T, can be 
written as 

UIUm =f’(x,rlYx2 (13) 

Nu, 
Re.J12 + Gr.$5 

= -eyx,o) 

and 

L(X’/PV) 
(Re.:‘* + Cr.:“) 3 = f”(x, 0). (15) 

Also of interest is the average Nusselt number GL 
defined as zL = hL/k, where t? is the average heat 
transfer coefficient over the plate length L. By finding 
/i from equation (14) and evaluating A, along with the 
definition of x, one can find 

7iGL 5/c2n+ I) 

Rel” + Gr”’ L 

X 

where Re,= Gr, and xL are Le,, Gr,y and x at 
x = L. The corresponding NuL expression for 
x,. = 0 (pure free convection with Re, = 0) can be 
found as 

and the a,* expression for xL = 1 (pure forced con- 
vection with Gr, = 0) has the form 

(ReL,:“ca5)x‘d, = -2ef(l?o). (‘8) 

NUMERICAL METHOD OF SOLUTION 

Equations (8), (9) (11) and (12) constitute a system 
of nonlinear partial differential equations which were 
transformed into a system of first order nonlinear 
differential equations. These first order equations were 
expressed in finite-difference form by linearizing the 
nonlinear terms and using a weighted finite-difference 
method, as outlined in Lee et al. [14]. The resulting 
system of weighted finite-difference equations was 
then expressed in a matrix form and solved using a 
Gaussian elimination method. The solution provided 
f; 7, and 8, and the cubic spline technique was 
employed to obtain f” and 0’. A solution was con- 
sidered to be converged if the newly calculated values 
for f, y and 0 differed from their previous guessed 
values within a tolerance of E < lo-‘. Successive 
guesses for new values of A f' and 0 were found from 
their calculated values and the previous guesses by the 
relationship fn,, = wf+ (1 -o)fold, etc. where w is 
the relaxation factor. It is noted that underrelaxation 
(o c 1) was rarely required for obtaining converged 
solutions. 

The numerical results were found to depend upon 
qoD and the step size A~I. A step size of A1 = 0.02 gave 
sufficient accuracy for Prandtl numbers of 0.1 through 
7. However, a step size of Aq = 0.01 was required for 
a Prandtl number equal to 100. The value of I], was 
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chosen as large as possible between 10 and 20 without 
causing numerical oscillations in the values of /‘, 0, 
,f”, and 0’. The choice of a step size of Ax = 0.05 was 
sufficient for all the cases considered. This indicated 
that Ax is not so critical to the numerical accuracy as 
the choice of An and r) ~. 

RESULTS AND DISCUSSION 

Numerical results were obtained for buoyancy- 
assisting flow covering Prandtl numbers of 0. I, 0.7, 7 
and 100. The values of the mixed convection par- 
ameter x ranged between 0 and 1, in increments of 
0.05, and the values of the exponent n in 
(T,-T,) = as” were taken as -0.4, 0, l/3 and I. 
This range of n values lies within the physical limits 
-0.4 < II < I as determined in a manner outlined by 
Gebhart [IS]. 

Representative velocity distributions in terms of 
(U/U&~ = f’(x, q) are presented in Figs. I and 2 for 
Prandtl numbers of 0.7 and 7. To conserve space, the 
velocity distributions for Pr = 0.1 and 100 are not 
shown. It is seen from these figures that the velocity 
profiles change from a predominantly forced con- 
vection profile (at x = 1) to that of the pure free con- 
vection profile (at x = 0). The effect of increasing the 
exponential value n for situations in which the influ- 
ence of the buoyancy forces is significant (small x 
values) is an apparent decrease in the maximum 
velocities inside the boundary layer for all the Prandtl 
numbers that were considered. The reasons for this 
trend can be explained as follows. In the vertical plate 
orientation the buoyancy force acts in the direction of 
the forced flow and therefore it will serve to aid the 
forced flow along the plate. For a horizontal plate the 

(y/x) Re:~2~-’ 

FIG. I. Dimensionless velocity profiles, Pr = 0.7. 
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FIG. 2. Dimensionless velocity profiles. Pr = 7.0. 

buoyancy force acts in the direction normal to the 
forced flow. When the exponent value n (and hence 
the wall-fluid temperature difference) increases, the 
buoyancy force normal to the plate will increase and 
act to retard the flow in the streamwise direction 
within the boundary layer under a strong buoyant 
flow (small x value). For a weak buoyant flow (large 
x value) the viscous forces are of greater significance 
and the change in the n value only slightly affects the 
velocity distribution in the boundary layer. Also, it is 
mentioned here that, in strong buoyant flow, as the 
Prandtl number increases, the effect of n on the 
velocity profiles is found to diminish and the peak 
value of (L&)X’ is found to decrease. 

For a given power of n the value of x at which a 
moderate to strong buoyancy force begins to affect 
the shape of the velocity profile is found to decrease 
as the Prandtl number increases. For Pr = 0. I and 0.7 
(Fig. 1) this occurs at approximately x = 0.6, where 
the profiles for larger powers of n dip below that of 
n = 0. For Pr = 7 (Fig. 2) and 100, significant changes 
in the shape of velocity profiles start to occur at 
x = 0.4 and x = 0.2, respectively. This behavior can 
be explained from the relative thickness between the 
momentum *and thermal boundary layers. As x 
decreases, the effect of buoyancy force increases. For 
low Prandtl numbers (Pr < 1) the thermal boundary 
layer thickness is larger than the momentum bound- 
ary layer thickness and the entire velocity field is 
affected by the temperature gradient. Thus the effect 
of buoyancy force on the velocity profiles can be felt 
at a smaller buoyancy force or at a larger value of x. 
On the other hand, for high Prandtl numbers (Pr >> 1) 
the momentum boundary layer thickness is much 
larger than the thermal boundary layer thickness and 
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FIG. 3. Dimensionless temperature profiles, x = 0.6. 

consequently the effect of buoyancy force induced by 
the fluid temperature gradient is localized in the region 
near the plate surface. This means that the effect of 
buoyancy force will not be significant until x becomes 
small. 

Representative temperature profiles are illustrated 
in Figs. 3 and 4 for x = 0.6 and 0.2. The temperature 
profiles for x = 1 .O, 0.8, 0.4 and 0 are similar in shape 
to those for x = 0.6 and 0.2, and they are not illus- 
trated. For a given value of x it is found that the effect 
of either increasing the Prandtl number or increasing 
the exponent n is to increase the wall temperature 

12 14 

FIG. 4. Dimensionless temperature profiles, x = 0.2. 
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FIG. 5. Results for local wall shear stress 
r,(s’/~l’)(Re~‘~+Gr,“~)-‘. 

gradient. Since an increase in the Prandtl number 
causes a relative decrease in the thermal boundary 
layer thickness one would expect the temperature 
gradient to increase. By increasing the value n, a larger 
heat flux can be expected at the wall, because the 
temperature gradient at the wall increases. 

The local wall shear stress in terms of 
r,(.u’/v~)[Re)“+ Gv.:‘~]-~ and the local Nusselt num- 
ber in terms of Nu,/[Re.!.“+ Gr!“] as a function of 
x = Re.~“/[Re.!.“+Gr,“5] are shown, respectively, in 
Figs. 5 and 6 for values of the exponent n of -0.4, 0, 
l/3 and 1, and Prandtl numbers of Pr = 0. I, 0.7, 7.0 

” I ----, 
- _ _ _ _ - - 1,s 
- 0 /’ /’ - .- -. -0.4 ,.’ 

I 

i, 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

FIG. 6. Results for local Nusselt number Nu,/(R~.~“+G~.~~~). 
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and 100. Their numerical values are also listed, respec- 
tively, in Tables 1 and 2. As can be seen from the 
figures, for a given n value, both the wall shear stress 
parameter and the surface heat transfer parameter 
initially decrease as x increases from 0 until they reach 
a minimum value and thereafter increase as x increases 
further to 1.0. These local minima occur at approxi- 
mately x = 0.7, 0.6, 0.5 and 0.4 for Prandtl numbers 
of 0.1, 0.7, 7.0 and 100, respectively. The surface heat 
transfer rate, Fig. 6, increases with increasing n for a 
given value of x, with higher heat transfer rates for 
larger Prandtl numbers. This is to be expected from 
the temperature profiles, Figs. 3 and 4. The wall shear 
stress, Fig. 5, also increases with increasing n for a 
given x, with lower shear stress for a larger Prandtl 
number. The dependence of the wall shear stress on 
the Prandtl number can be explained by the fact that 
a smaller Prandtl number gives rise to a larger vel- 
ocity gradient at the wall and hence a higher wall 
shear stress. The opposite is true for larger Prandtl 
numbers. 

The behaviors of the local wall shear stress 
parameter 7,(x2/vp)[Re.$‘+ Gr.~“]-’ and the local 
Nusselt number parameter Nu,[Re)‘2+ Gr,A’5], as seen 
in Figs. 5 and 6, seem to indicate a lower wall shear 
stress and Nusselt number for mixed convection than 
would be predicted for pure forced convection or pure 
free convection. However, this is not the case. For 
example, consider the case of Pr = 0.7, n = 0 and 

x = 0.5. If the Reynolds number is taken as Re, = IO3 
the corresponding Grashof number can be found from 
the x expression to be Gr, = 3.16 x IO’. From Tables 
1 and 2 (for Pr = 0.7 and n = 0) the local wall shear 
stress in terms of t,(x2/vp) and the local Nusselt num- 
ber Nu, for the case of pure forced convection (x = 1, 
Re, = IO’, Gr, = 0) are found to be 10 502 and 9.256, 
respectively. For the case of pure free convection 
(x = 0, Gr, = 3.16 x IO’, Re,r = 0), the corresponding 
7,(x2/vp) and Nu, values are, respectively, 31 258 and 
11.215. Next, from the mixed convection results for 
x = 0.5 (with Re, = lo3 and Gr,x = 3.16 x lo’), the 
local wall shear stress 7,(x2/vp) and the local Nusselt 
number Nu,~ can be found to have the respective values 
37 315 and 12.833. It is thus obvious that the predicted 
values of shear stress and Nusselt number for x = 0.5 
(mixed convection) are actually higher than their 
respective values for pure forced convection and pure 
free convection. 

The local Nusselt number Nu,~ may alternately be 
expressed in terms of Nu,Re; ‘I2 as a function of 
Gr,y Re.; 512. When these values are plotted using a log- 
log scale, as shown in Fig. 7, the resulting curves are 
typical of the results presented in previous studies 
where the mixed convective values are shown to 
asymptotically approach the straight lines for pure 
forced convection (Gr,/Re.:” = 0) and pure free con- 
vection (Gr,/Re,:‘* + co). Again, the surface heat 
transfer rate is seen to increase with increasing n, with 

Table 1. Results for the local wall shear stress s,(x’/p) (Rel” + Cr.!“)- ’ = f”(x, 0) 

Pr = 0.1 Pr = 0.7 

n n 
x -0.4 0 113 I -0.4 0 l/3 I 

0 1.6908 2.0296 2.2173 2.4794 0.9164 0.9889 1.0484 1.1453 
0.1 1.2314 1.4777 1.6145 1.8056 0.6689 0.7212 0.7644 0.8346 
0.2 0.8649 I .0358 1.1308 1.2633 0.4729 0.5081 0.5377 0.5859 
0.3 0.5815 0.6928 0.7548 0.8405 0.3226 0.3443 0.363 1 0.3938 
0.4 0.3720 0.4387 0.4755 0.5256 0.2134 0.2251 0.2358 0.2535 
0.5 0.2292 0.2645 0.2834 0.3085 0.1422 0.1475 0.1528 0.1617 
0.6 0.1495 0.1648 0.1724 0.1825 0.1102 0.1125 0.1148 0.1187 
0.7 0.1336 0.1383 0.1407 0.1438 0.1225 0.1237 0.1247 0.1263 
0.8 0.1725 0.1737 0.1746 0.1756 0.1711 0.1720 0.1726 0.1734 
0.9 0.2423 0.2429 0.2433 0.2437 0.2423 0.2428 0.2431 0.2436 
1.0 0.3221 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 

X 

0 0.4262 0.4170 0.4288 0.4559 0.161 I 0.1509 0.1526 0.1597 
0.1 0.31 I6 0.3048 0.3133 0.3331 0.1180 0.1105 0.1118 0.1170 
0.2 0.2216 0.2165 0.2224 0.2363 0.0850 0.0797 0.0806 0.0844 
0.3 0.1539 0.1503 0.1542 0.1633 0.0620 0.0584 0.0591 0.0618 
0.4 0.1073 0.1050 0.1074 0.1130 0.0499 0.0480 0.0486 0.0504 
0.5 0.0826 0.0818 0.0832 0.0863 0.0527 0.0523 0.0529 0.0542 
0.6 0.0850 0.0853 0.0862 0.0878 0.0748 0.0753 0.0759 0.0769 
0.7 0.1167 0.1175 0.1181 0.1191 0.1146 0.1155 0.1161 0.1170 
0.8 0.1705 0.1713 0.1718 0.1726 0.1703 0.1711 0.1716 0.1723 
0.9 0.2422 0.2428 0.243 I 0.2435 0.2422 0.2428 0.243 I 0.2435 
I.0 0.3221 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 0.3321 

Pr = 7.0 Pr = 100 

n n 
-0.4 0 l/3 I -0.4 0 l/3 1 
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Table 2. Results for the local Nusselt number Nu,/(ReJ’2 + Gr.i’S) = - 6’( x, 0) 

Pr = 0.1 Pr = 0.7 

” n 
x -0.4 0 113 I -0.4 0 l/3 I 

0 0.0620 0.1963 0.2619 0.3530 0.1244 0.3547 0.4580 0.5994 
0.1 0.0560 0.1766 0.2356 0.3175 0.1121 0.3194 0.4123 0.5396 
0.2 0.0504 0.1575 0.2098 0.2825 0.1003 0.2852 0.3680 0.4812 
0.3 0.0453 0.1392 0.1851 0.2487 0.0892 0.2530 0.3261 0.4256 
0.4 0.0413 0.1224 0.1623 0.2175 0.0793 0.2244 0.2888 0.3759 
0.5 0.0383 0.1085 0.1435 0.1914 0.0717 0.2029 0.2608 0.3383 
0.6 0.0364 0.1004 0.1322 0.1754 0.0685 0.1953 0.2509 0.3243 
0.7 0.0355 0.1018 0.1338 0.1764 0.0726 0.2081 0.267 I 0.3440 
0.8 0.0372 0.1124 0.1476 0.1940 0.0817 0.2342 0.3002 0.3858 
0.9 0.0408 0.1260 0.1654 0.2172 0.0918 0.2633 0.3372 0.4328 
I.0 0.0451 0.1400 0.1837 0.2410 0.1021 0.2927 0.3745 0.4804 

Pr = 7.0 Pr = 100 

n n 
x -0.4 0 l/3 I -0.4 0 l/3 I 

0 0.2425 0.6303 0.7932 I.0145 0.4451 1.1239 I.4013 1.7760 
0.1 0.2185 0.5676 0.7145 0.9139 0.4010 1.0130 1.2636 1.6022 
0.2 0.1955 0.5079 0.6395 0.8183 0.3602 0.9114 1.1388 I .4465 
0.3 0.1741 0.4535 0.5718 0.7323 0.3257 0.8305 I .0423 I .3289 
0.4 0.1561 0.4101 0.5184 0.6645 0.3044 0.7933 I .0027 1.0847 
0.5 0.1451 0.3885 0.4929 0.6323 0.3095 0.8321 1.0579 1.3564 
0.6 0.1477 0.4037 0.5137 0.6582 0.3470 0.9486 1.2071 I .5450 
0.7 0.1646 0.4536 0.5770 0.7378 0.4006 I .0987 I .3962 I .7836 
0.8 0.1872 0.5163 0.6560 0.8374 0.4579 I .2559 I .5938 2.033 I 
0.9 0.2107 0.581 I 0.7375 0.9404 0.5157 1.4139 1.7925 2.2840 
1.0 0.2343 0.6460 0.8192 1.0437 0.5736 I .5720 1.9912 2.5349 

higher transfer rates for larger Prandtl numbers, as 
was shown in Fig. 6. 

Correlation equations for Nusselt numbers in 
forced convection are available for a wide range of 
Prandtl numbers and values of the exponent n. For 

_.-.-_____.______.-~-~ 
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FIG. 7. Nu,~ Re; “’ vs Gr,r Re, “’ for mixed convection. 

pure forced convection the local and average Nusselt 
numbers for 0.1 < Pr < 100 and -0.4 < Pr ,< 0.5 
have been correlated by the following expressions [ 161 

Nu,~,~ Re.; u2 = cr,(Pr)[l + V,] (1% 

where 

a,(Pr) = 0.339Pr”‘[l +(0.0468/Pr)“3]-“4 (20) 

V, = n{[1.17+11.0exp (-5.6Pr”‘0)]-0.92n} (21) 

and 

Nu,,Re,‘/* = 2a,(Pr)[l+V,]. (22) 

For pure free convection the local and average Nusselt 
numbers for 0.1 < Pr < 100 and -0.4<rr < 1.0 
from the present study can be correlated by the fol- 
lowing expressions 

Nu,., Gr,- ‘/’ = ctN(Pr)[l + VN] (23) 

where 

Pr ‘I2 
% (Pr) = tPd5) I” (o.25 + 1 .6pr l/2) (24) 

as given by Chen et al. [17] and 

V, = n/Al -n2/A2+n’/A3 

with 

cw 
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Al =4.167x 10e2 In (Pr)+0.9791 

A2 = 5.450 x 10m2 In (Pr)+ 1.9990 

A3 = 9.728 x 10m2 In (Pr)+5.9260. (26) 

The corresponding average Nusselt number has the 
expression 

GL.N Gr; ‘I5 = (27) 

The expression for VN, equation (25) was developed 
using the results of this study to extend the correlation 
from n = 0 [16] to the general case of power-law wall 
temperature variation. 

Following Churchill [ 181, the correlation equation 
for Nusselt numbers in mixed convection is expressed 
by the form 

This form of correlation has been found to give an 
accuracy of within 5% for 0.1 < Pr < 100 for flat 
plates with E = 3. For the present study with a mixed 
convection parameter x, the corresponding cor- 
relation equation for the mixed convection local 
Nusselt number can be represented by 

N”, = {[x&g] 
(l7e.d” + Cr.:“) 

It was found that the maximum difference between 
the correlated values from equation (29) and the cal- 
culated values is within 5% for E = 3. 

The correlation equation for the mixed convection 
average Nusselt number can be similarly expressed by 

75;L ={[xL(E&)] 
(Rel” + Gr:“) 

+ [(I-XL)($)lbjlle. (30) 

value of the exponent n for a given Prandtl number 
Pr, and (2) for a given value of the exponent n, the 
local surface heat transfer rate increases but the local 
wall shear stress decreases with increasing Prandtl 
number. The correlation equations for the local and 
average Nusselt numbers provide results that agree 
well with the numerically predicted values. 
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